Now that you've collected your data, you can preprocess it to make it compatible with the policy training code. The following will assume you have a .zip file with your task data from a specific environment — see the "Data Saving and Uploading" section here for more details on this.
Note: the gripper processing models are quite large and so GPU resources are required.min-stetch
codebase.min-stretch
to set the appropriate config paths.
./setup.sh
data-collection
folder.
cd data-collection
srun --nodes=1 --cpus-per-task=8 --mem=64GB --time=2:00:00 --gres=gpu:1 --pty /bin/bash
--nv
as we'll require Nvidia drivers for GPU use, i.e.
singularity exec --nv --overlay $SCRATCH/overlay-home-robot-env.ext3:rw /scratch/work/public/singularity/cuda11.8.86-cudnn8.7-devel-ubuntu22.04.2.sif /bin/bash
mamba env create -f data_collection_env.yaml
mamba activate data_collection
conda install conda-forge::ffmpeg
cd gripper/utils/co-tracker && pip install -e .
mkdir -p checkpoints
cd checkpoints
wget --no-check-certificate https://huggingface.co/facebook/cotracker3/resolve/main/scaled_online.pth
cd ../../../../
scp
or rsync
.python process_all_trajs.py -z /path/to/your/zip/file.zip
compressed_np_depth_float32.bin
compressed_video_h264.mp4
labels.json
rgb_rel_videos_exported.txt
Stick_Data/
|--- Task1_Name/
|------ Home1/
|-------- Env1/
|----------- 2025-05-25-19_29_32/
|----------- 2025-05-25-19_30_02/
|----------- ...
|-------- Env2/
|----------- 2025-05-25-19_35_01/
|----------- 2025-05-25-19_35_09/
|----------- ...
|------ Home.../
|-------- Env1/
|----------- 2025-05-25-19_33_32/
|----------- 2025-05-25-19_34_02/
|----------- ...
|--- r3d_files.txt
Door_Opening
, and an example of Home1 would be CDS
.organize_data.sh
script to organize your data into this format — just specify the SRC
, DEST
, TASK
, HOME
, and ENV
variables within the script.
./organize_data.sh
r3d_files.txt
file shown above (used by the dataloader to specify demos to use), run
./get_txt.sh YOUR_DATA_PATH
In the example file structure above, YOUR_DATA_PATH
would be the path to the Stick_Data
folder.